InSplorer 内窥镜

多光子多模式成像探针

InSplorer 探针内窥镜支持双光子/三光子自荧光成像,二次/三次谐波成像,以及反斯托克斯相干拉曼成像。

CARS/SHG – Humain Colon Lipid(Red) and Collagen(Green)
CARS – Human Colon Lipid
Mouse spinal cord: Myelin (magenta – CARS), spinal axon (blue – 2photon)
Human skin: stratum corneum (autofluorescence)
Mouse brain labelled with GCamp (2photon)
Collagen fibers: rat tail tendon – SHG
Epidermal layer of unstained mouse skin. Collagen fibrils structure (SHG – green) ; Cellular structure (3PEF – red, THG – blue)
GFP labeled mouse brain (3PEF – λexc = 1300 nm)
(a) Unstained mouse retina (3PEF – λexc = 1300 nm) radial section; (b) Ganglion cell layer (GCL) transverse section; (c) Inner plexiform layer (IPL) transverse section

InSplorer 集成系统内部包括激光光源,光电设备和电脑,外部通过FemtoGuide光纤连接至仅4厘米长,直径2.2厘米的探针。InSplorer同时配有友好的用户操作软件和交互界面。


InSplorer 系统可根据客户需求,同时支持多类通用多光子激光器,使用 FemtoGuide 光纤连接至探针。


主要参数

激光光源:
  • Pulsed femtosecond and picoseconds lasers
  • Wavelength range: 750nm to 1550 nm
  • Integration of your existing light source using our multiphoton delivery fiber (M-DF)
成像参数
  • Frame rate: up to 10 Hz
  • Field of view: up to 400 µm
  • Lateral resolution: 1 µm
  • Collection NA: 0.5
  • Working distance: 10 µm to 600 µm (fixed), 10 µm to 300 µm (tunable)
  • Imaging modalities (Fluorescence and label free): 2-Photon, SHG, THG, CARS
探针参数
  • Tip diameter: 1.3 mm or 2 mm (distal)
  • Distal end length: <40 mm
  • Flexible part length: 50-400 cm
  • Lateral resolution: 1 µm
  • Axial resolution: 6 µm
  • Weight (distal end): < 2gr
  • Working distance: 10 µm to 600 µm (fixed), 10 µm to 300 µm (tunable)

Publications

D. Septier, V. Mytskaniuk, R. Habert, D. Labat, K. Baudelle, A. Cassez, G. Brévalle-Wasilewski, M. Conforti, G. Bouwmans, H. Rigneault, and A. Kudlinski, “Label-free highly multimodal nonlinear endoscope,” Optics Express 30, 25020-25033 (2022). https://doi.org/10.1364/OE.462361

A. Kudlinski, A. Cassez, O. Vanvincq, D. Septier, A. Pastre, R. Habert, K. Baudelle, M. Douay, V. Mytskaniuk, V. Tsvirkun, H. Rigneault, and G. Bouwmans, “Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy,” Optics Express 28, 15062-15070 (2020). https://doi.org/10.1364/OE.389084

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Science & Applications 7, 10 (2018). https://doi.org/10.1038/s41377-018-0003-3

A. Lombardini, E. R. Andresen, A. Kudlinski, I. Rimke, and H. Rigneault, “Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy,” Optics Letters 42, 1824-1827 (2017). https://doi.org/10.1364/OL.42.001824